Every Frame Is a Sum of Three (but Not Two) Orthonormal Bases - and Other Frame Representations

نویسنده

  • Peter G. Casazza
چکیده

We show that every frame for a Hilbert space H can be written as a (multiple of a) sum of three orthonormal bases for H. We next show that this result is best possible by including a result of N.J. Kalton: A frame can be represented as a linear combination of two orthonormal bases if and only if it is a Riesz basis. We further show that every frame can be written as a (multiple of a) sum of two tight frames with frame bounds one or a sum of an orthonormal basis and a Riesz basis for H. Finally, every frame can be written as a (multiple of a) average of two orthonormal bases for a larger Hilbert space. 1.Frames as Operators If H is a Hilbert space, we denote the set of all bounded operators T : H → H by B(H). We will always use (en) to denote an orthonormal basis on H. Recall that a sequence (xn) in a Hilbert space H is called a frame for H if there are constants 0 < A ≤ B so that for all x ∈ H we have A‖x‖ ≤ ∑ n | < x, xn > | ≤ B‖x‖. We call A, B the frame bounds for the frame and if A = B, we call this a tight frame. The frame definition has many equivalent forms. We will work here with frames thought of as operators on H. That is, a sequence (xn) is a frame on H if and only if there is an operator T : H → H so that Ten = xn and T is an onto 1991 Mathematics Subject Classification. 46C05, 47A05, 47B65.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach to Continuous Riesz Bases

This paper deals with continuous frames and continuous Riesz bases. We introduce continuous Riesz bases and give some equivalent conditions for a continuous frame to be a continuous Riesz basis. It is certainly possible for a continuous frame to have only one dual. Such a continuous frame is called a Riesz-type frame [13]. We show that a continuous frame is Riesz-type if and only if it is a con...

متن کامل

Some relationship between G-frames and frames

In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K)$-module $B(H,K)$. This is an extension of [A. Askarizadeh, M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011) 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual fra...

متن کامل

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$

‎Frames generalize orthonormal bases and allow representation of all the elements of the space‎. ‎Frames play significant role in signal and image processing‎, ‎which leads to many applications in informatics‎, ‎engineering‎, ‎medicine‎, ‎and probability‎. ‎In this paper‎, ‎we introduce the concepts of operator frame for the space $End_{mathcal{A}}^{ast}(mathcal{H})$ of all adjointable operator...

متن کامل

Some results on g-frames in Hilbert spaces

In this paper we show that every g-frame for a Hilbert space H can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. We also show that every g-frame can be written as a sum of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz basis for H . We further give necessary and sufficient conditions on g-Besse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997